FANDOM


Definition Edit

Given a set of ontological entities $ O $, a distance function is a dissimilarity function $ \delta:O\times O \longrightarrow \mathbb{R}^+ $ that holds the following properties:

  • Identity of indiscernibles $ \forall x,y \in O, \delta(x,y)= 0 $ if and only if $ x=y $
  • Simmetry: $ \forall x,y \in O, \delta(x,y) = \delta(y,x) $
  • Subadditivity (triangle inequality): $ \forall x,y,z \in O, \delta(x,y)+\delta(y,z)\geq \delta(x,z) $