Definition Edit

The Tversky contrast model similarity is a similarity function TverskyModelSim:\{0,1\}^n\times \{0,1\}^n\longrightarrow \mathbb{R} defined as

TverskyModelSim(u,v) = \alpha f(u\cap v) - \beta f(u-v) - \gamma f(v-u),


  • u\cap u is the set of positions \{i|u_i=v_i=1\}
  • u-v is the set of positions \{i|u_i=1,v_i=0\}
  • v-u is the set of positions \{i|u_i=0,v_i=1\}
  • f is a monotonic increasing function (usually a weighted sum).
  • \alpha, \beta and \gamma are positive reals numbers (used as weights).

Depending of values of \alpha, \beta and \gamma this function could not be simmetric.

Examples Edit

  • For \alpha=2, \beta=1 and \gamma=1, and f the cardinality of sets, TverksyModelSim((1,0,1,1,0),(0,1,1,1,1))=2|\{3,4\}|-|\{1\}|-|\{2,5\}| = 4 -1-2 = 1.
  • For \alpha=1, \beta=0 and \gamma=0, and f the cardinality of sets, we have a simmetric function: TverskyModelSim((1,0,1,1,0),(0,1,1,1,1))= TverskyModelSim((0,1,1,1,1),(1,0,1,1,0))=|\{3,4\}| = 2.
  • For \alpha=0, \beta=0.5 and \gamma=1, and f the cardinality of sets, we have an asimmetric function: TverskyModelSim((1,0,1,1,0),(0,1,1,1,1))=-0.5|\{1\}|-|\{2,5\}| = -2.5, but TverskyModelSim((0,1,1,1,1),(1,0,1,1,0))|=-0.5|\{2,5\}|-|\{1\}| = -2.

Normalization Edit

A possible way of nomalization is the ratio model similarity defined as

RatioModelSim(u,v) = \frac{\alpha f(u\cap v)}{\alpha f(u\cap v) + \beta f(u-v) + \gamma f(v-u)}

Examples Edit

  • For \alpha=2, \beta=1 and \gamma=1, and f the cardinality of sets, RatioModelSim((1,0,1,1,0),(0,1,1,1,1))=\frac{2|\{3,4\}|}{2|\{3,4\}|+|\{1\}|+|\{2,5\}|} = \frac{4}{4+1+2} = 4/7 = 0.57.

Variations Edit

When \alpha=0 instead of a similarity function we get a distance function.

Applications Edit

This function is used to compare entities represented as vectors of boolean features. In contrast with Hamming similarity for vectors, only present features are taken into acount. The weights \alpha, \beta and \gamma serves to ponderate de importance of common features of u and v, features exlusives of u and features exlusives of v respectively, providing a wide range of similarity functions.

References Edit

Ad blocker interference detected!

Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.